Externally Calibrated Parallel Imaging in the Presence of Metallic Implants

Curtis N Wiens1, Nathan S Artz2, Hyungseok Jang3, Alan B McMillan1, and Scott B Reeder1,3

1Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States, 2Department of Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States, 3Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States

Target audience: Researchers and clinicians interested in imaging near metallic implants.

Introduction: 3D multi-spectral imaging (3D-MSI) acquisitions such as a SR-FPE1, MAVRIC2, and SEMAC3 address the extremely large off-resonance signal near metallic implants by acquiring multiple acquisitions at different frequency offsets (Fig 1a). Acquiring multiple 3D images is time consuming and requires self-calibrated parallel imaging to obtain clinical feasible scan times. Unfortunately, a substantial amount of time is spent acquiring the fully sampled calibration region, particularly for fully phase-encoded methods like SR-FPE (Fig 1b). The purpose of this work was to develop an external calibrated parallel imaging technique that is feasible in the presence of metallic implants.

Theory: Externally calibrated parallel imaging techniques remove the need to acquire calibration data by acquiring a separate calibration scan (Fig 1c). In this work we propose to use an ultra-short echo time (UTE) acquisition with broadband excitation of the entire off-resonance spectrum, by using low flip angles and non-selective pulses. Further, we propose to avoid frequency encoding by using a single point imaging sequence, thereby preventing in-plane distortions in the coil sensitivities.

Methods: External calibration, self-calibrated SR-FPE, and self-calibrated MAVRIC acquisitions were acquired of a hip prosthesis phantom and a volunteer with a cobalt/chromium/molybdenum alloy hip head placed posterior to the knee (with IRB approval). Imaging was performed using a 16 channel wrap coil (NeCoil, Pewaukee, WI) at 3T (MR 750, GE Healthcare, Waukesha, WI). For comparison, the fully-sampled calibration regions of SR-FPE and MAVRIC acquisitions were retrospectively decimated for all RF offsets and reconstructions were performed using external calibration.

External Calibration: In phantom and in-vivo experiments, external calibration was performed using a purely phase encoded UTE single point sequence using the following parameters: 8us hard pulse (150kHz bandwidth), TE=60us, TR=1.1ms, matrix size=31x31x31 with elliptical k-space sampling, flip angle=2°.

SR-FPE Acquisitions: Phantom and in-vivo 3D undersampled SR-FPE acquisitions (R=3x2x2, ACS=18x18x18, ETL=24, ADC samples = 34, 2.3kHz multiband Gaussian pulses centered at [-4, 0, 4]kHz, 24kHz spectral coverage) were acquired. Phantom scan parameters were: matrix=150x100x38, FOV=22.5x14.8x15.2cm, acquisition time=37/28min (self/external). In-vivo scan parameters were: FOV=24x14x13cm, matrix=150x86x32, acquisition time=36min/26min.

MAVRIC Acquisitions: Phantom and in-vivo MAVRIC acquisitions were also acquired (R=2x2, ACS=32x16 elliptical, ETL=24, 2.3kHz Gaussian pulse, 24kHz spectral coverage). Phantom and in-vivo imaging parameters were kept identical except the following: phantom matrix=256x168x38, phantom acquisition time = 8:23/6:47min (self/external), in-vivo matrix=256x146x32, in-vivo acquisition time = 6:24min/4:48min (self/external).

Results and Discussion: Figure 2 shows phantom and in-vivo comparisons of externally calibrated and self-calibrated parallel imaging SR-FPE and MAVRIC acquisitions. By using the same outer acceleration factors and removing calibration regions, scan times can be significantly reduced (~25%). This effect is particularly impactful for SR-FPE, although additional acceleration is needed to acquire MAVRIC acquisitions in clinically feasible acquisition times.

Conclusion: A wide bandwidth UTE single point acquisition allowed externally calibrated parallel imaging for 3D-MSI, eliminating the need for calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE.

Acknowledgements: The authors acknowledge the support of NIH (UL1TR00427). We also wish to thank GE Healthcare for their support.