Mariya Doneva^{1}

This lecture explains the principles of model-based reconstruction methods and their linearization using dictionaries for MR parameter mapping.

1) Aharon, M, M Elad, and A Bruckstein. "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representations." IEEE Trans Signal Process 54 (2006): 4311-4322.

2) Arnold, J, F Fidler, T Wang, E Pracht, M Schmidt, and P Jakob. "Imaging lung function using rapid dynamic acquisition of T1-maps during oxygen enhancement." Magn Reson Mater Phys Biol Med 2004 (2004): 246-253.

3) Baudrexel, S, L Nürnberger, U, Seifried, C, Klein, JC, Dellelr, T, Steinmetz, H Rüb, R Deichmann, and R Hilker. "Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s desease." Neuroimage 51 (2010): 512-520.

4) Bilgic, B, K Setsompop, J Cohen-Adad, A Yendiki, L Wald, and E Adalsteinsson. "Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries." Magn Reson Med 68 (2012): 1747–1754.

5) Block, K.T., M Uecker, and J Frahm. "Model-based iterative reconstruction for radial fast spin echo MRI." IEEE Trans Med Imaging 28 (2009): 1759-1769.

6) Blume, U, et al. "Interleaved T1 and T2 relaxation time mapping for cardiac applications." J Magn Reson Imaging 29 (2009): 480-487.

7) Candes, E, and J Romberg. "Practical signal recovery from random projections." Proc. SPIE Conf Wavelet Applications in Signal and Image Processing , 2004.

8) Candes, E, and T Tao. "Near-optimal signal recovery from random projections:universal encoding strategies." IEEE Trans. Information Theory 52 (2006): 5406-5425.

9) Candes, E, J Romberg, and T Tao. "Robust uncertainty principles: Exact signal recovery from highly incomplete frequency information." IEEE Trans Inf Theory, 52 (2006): 489-509.

10) Chartrand, R. „Exact reconstruction of sparse signals via nonconvex minimization.“ IEEE Signal Process Lett 14 (2007): 707-710.

11) Chen, S, D Donoho, and M Saunders. "Atomic decomposition by basis pursuit." SIAM J Sci Comput 20 (1999): 33-61.

12) Chung, Y, et al. "Quantification of superparamagnetic iron oxide-mediated signal intensity change in patients with liver cirrhosis using T2 and T2* mapping: a preliminary report." J Magn Reson Imaging 31 (2010): 1379-1386.

13) Cieszanowski, A, W Szeszkowski, M Golebiowski, D Bielecki, M Grodzicki, and B Pruszynski. "Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence." Eur Radiol 12 (2002): 2273-2279.

14) Daubechies, I, M Defrise, and C De Mol. "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint." Comm Pure Appl Math 57 (2004): 1413-1457.

15) Daubechies, I, R DeVore, M Fornasier, and S Gunturk. "Iteratively re-weighted least squares minimization for sparse recovery." Comm Pure Appl Math 63 (2010): 1-38.

16) Davis, M, G Puy, P Vandergheynst, and Y Wiaux. "Compressed quantitative MRI: Bloch response recovery through iterated projection." Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. Florence, 2014. 6899 - 6903.

17) Deoni, M, B Rutt, T Arun, C Pierpaoli, and D Jones. "Gleaning multicomponent T1 and T2 information from steady-state imaging data." Magn Reson Med 60 (2008): 1372-1387.

18) Doneva, M, P Börnert, H Eggers, A Mertins, and J, Lustig, M Pauly. "Compressed sensing for chemical shift based water-fat separation." Magn Reson Med 64 (2010): 1749-1759.

19) Doneva, M, P Börnert, H Eggers, C Stehning, J Senegas, und A Mertins. „Compressed Sensing Reconstruction for Magnetic Resonance Parameter Mapping.“ Magn Reson Med 64 (2010): 1114-1120.

20) Donoho, D. „Compressed sensing.“ IEEE Trans Inf Theory 52 (2006): 1289-1306.

21) Glaser, C. "New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging." Radiol Clin North Am 43 (2005): 641-653.

22) Huang, C, C Graff, E Clarkson, A Bilgin, and M Altbach. "T2 Mapping from Highly Undersampled Data by Reconstruction of Principal Component Coefficient Maps Using Compressed Sensing." Magn Reson Med 67 (2012): 1355-1366.

23) Kim, S, K Koh, M Lustig, S Boyd, and D Gorinevsky. "An Interior-Point Method for Large-Scale l1-Regularized Least Squares." IEEE Journal on Selected Topics in Signal Processing 1 (2007): 606-617. 24) Liang, Z. "Spatiotemporal imaging with partially separable functions." IEEE International Symposium on Biomedical Imaging. Arlington , Virginia, USA,, 2007. 988-991.

25) Lustig, M, D Donoho, and J Pauly. "Sparse MRI: The application of compressed sensing for rapid MR imaging." Magn Reson Med 58 (2007): 1182-1195.

26) Ma, Dan, et al. "Magnetic Resonance Fingerprinting." Nature 495 (2013): 187-193.

27) Madore, B, G Glover, and N Pelc. "Unaliasing by Fourier- encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI." Magn Reson Med 42 (1999): 813-828.

28) Mallat, S. A Wavelet Tour of Signal Processing. Academic Press, 1999.

29) Menzel, M, et al. "Accelerated diffusion spectrum imaging in the human brain using compressed sensing." Magn Reson Med 66 (2011): 1226-1233.

30) Petzschner, F, I Ponce, M Blaimer, P Jakob, and Breuer F. "Fast MR Parameter Mapping Using k-t Principal Component Analysis." Magn Reson Med 66 (2011): 706-716.

31) Sharma, S, N Artz, D Hernando, D Horng, and S Reeder. "Improving chemical shift encoded water–fat separation using object-based information of the magnetic field inhomogeneity." Magn Reson Med, 2014. 32) Shi, X, X Ma, W Wu, F Huang, C Yuan, and H Gao. "Parallel Imaging and Compressed Sensing Combined Framework for Accelerating High-Resolution Diffusion Tensor Imaging Using Inter-Image Correlation." Magn Reson Med, 2014.

33) Sumpf, T, A Petrovic, M Uecker, F Knoll, and J Frahm. "Fast T2 mapping with improved accuracy using undersampled spin-echo MRI and model-based reconstructions with generating function." IEEE Trans Med Imaging 33 (2014): 2213 - 2222.

34) Sumpf, T, M Uecker, S Boretius, and J Frahm. "Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MR." J Magn Reson Imaging 34 (2011): 420-428.

35) Tofts, P. Quantitative MRI of the brain: measuring change caused by disease. Chichester: John Wiley & Sons;, 2003.

36) Tran-Gia, J, D Stäb, T Wech, D Hahn, and H Köstler. "Model-based Acceleration of Parameter mapping (MAP) for saturation prepared radially acquired data." Magn Reson Med 70 (2013): 1524-1534. 37) Tropp, J, and A Gilbert. "Signal recovery from random measurements via orthogonal matching pursuit." IEEE Trans Inf Theory 53 (2007): 4655-4666.

38) Tsao, J, P Boesiger, and K. Pruessmann. "k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations." Magn Reson Med 50 (2003): 1031-1042.

39) Velikina, J, A Alexander, and A Samsonov. "Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension." Magn Reson Med 70 (2013): 1263-1273.

40) Welsh, C, E DiBella, G Adluru, and E Hsu. "Model-based Reconstruction of Undersampled Diffusion Tensor k-space Data." Magn Reson Med 70 (2013): 429-440.

41) Wu, Y, et al. "Accelerated MR diffusion tensor imaging using distributed compressed sensing." Magn Reson Med 71 (2013): 763-772.

42) Zhang, T, J Pauly, and I Levesque. "Accelerating parameter mapping with a locally low rank constraint." Magn Reson Med, 2014.