Utilizing surface and subsurface trackbed inspection techniques to help plan and derisk undercutting operations on Amtrak’s Northeast Corridor

Amanda Kessler, PE, Amtrak
Jon Gascoyne, Zetica Rail
Asger Eriksen, Zetica Rail
Steve Atherton, Balfour Beatty
Outline

• Background
• Technology Overview
• Maintenance Planning / Undercutting / Drainage
• Conclusions & Benefits
• Recommendations
Background

• Zetica/BB commissioned by Amtrak to undertake a detailed trackbed inspection survey of a ~84 mile section of the North East Corridor route between East Haven and Kingston Station.

• Aims:
 • To assist in identifying the most appropriate locations for undercutting based on ballast fouling and fouling depth.
 • Help derisk undercutting operations by identifying locations with potentially shallow bedrock.
 • Help derisk undercutting operations by identifying locations with limited clearance.
 • Assist with identification of poor track drainage locations.
Survey platform & measurement systems

• Integrated datasets acquired in a single pass over each track using BB/Zetica’s Railroad Asset Scanning Car (RASC®) system mounted to hy-rail vehicle.
RASC® measurement systems

<table>
<thead>
<tr>
<th>System Deployed</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Penetrating Radar (GPR) 6 channel system:</td>
<td>• Layer interface metrics</td>
</tr>
<tr>
<td>• 3 x 2 GHz</td>
<td>• Areas of formation failure / incipient mud spots</td>
</tr>
<tr>
<td>• 3 x 400 MHz</td>
<td>• Modelled ballast fouling & fouling depth layer</td>
</tr>
<tr>
<td></td>
<td>• Moisture likelihood estimate</td>
</tr>
<tr>
<td>Trackbed surface imaging</td>
<td>• Surface mud spots</td>
</tr>
<tr>
<td></td>
<td>• Tie quality</td>
</tr>
<tr>
<td>Mobile Terrestrial Laser Scanner (MTLS)</td>
<td>• Ballast management</td>
</tr>
<tr>
<td></td>
<td>• Track drainage</td>
</tr>
<tr>
<td></td>
<td>• Clearance analysis of targeted areas for undercutter access</td>
</tr>
</tbody>
</table>
Ground penetrating radar (GPR)

- Multi-channel GPR system utilising both high (2 GHz) and low (400 MHz) frequency antennas to achieve resolution & depth.
- 3 antennas per frequency – mounted over left shoulder, track center and right shoulder.

<table>
<thead>
<tr>
<th>GPR – 2 GHz antenna</th>
<th>GPR – 400 MHz antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballast Fouling</td>
<td>Subgrade erosion</td>
</tr>
<tr>
<td>Ballast thickness</td>
<td>Layer Roughness</td>
</tr>
<tr>
<td>Shallow Mudspots/Wet Beds</td>
<td>Deep Ballast Pockets</td>
</tr>
<tr>
<td>Mapping surface assets</td>
<td>Mud spots / Wet beds</td>
</tr>
<tr>
<td></td>
<td>Buried assets e.g. culverts</td>
</tr>
</tbody>
</table>
Trackbed surface imaging

- 4 high speed linescan cameras
- Integrated infrared light source
- Image capture triggered by a DMI with along track resolution starting at 0.75mm per pixel
Mobile terrestrial laser scanner (MTLS)

- 360° laser profiling system (with integrated Inertial Measurement Unit)
- High scan rate (max. 200 Hz) for detail – 1 million pixels/second
- Down-track scan interval ~10 cm @ survey speed 50 mph

Laser Profiler
- Ballast profile
- Ballast volume
- Gauge clearance
- Drainage
- Ground contour mapping
- Mapping assets
Trackbed metrics

- The results of the RASC® survey were summarized as a series of trackbed metrics, derived from the interpreted GPR layer depth information, modelled ballast fouling and interpretation of the linescan camera images and Lidar point clouds.

- Each of the metrics reports a different aspect of the trackbed condition, which together highlight the worst sections of track and help the engineer to plan the most appropriate course of remedial action.

Sub-Surface Condition Metrics
- Ballast Fouling Index (BFI)
- Fouling Depth Level (FDL) Index
- Ballast Thickness Index (BTI)
- Layer (Interface) Roughness Index (LRI)
- Moisture Likelihood Index (MLI)
- Surface Mud Spot Index (SMI)

Surface Condition Metrics
- Ballast Volume Metric (BVM)
- Ballast Deficit Metric (BDM)
- Surface Mud Spot Index (SMI)
- Track Drainage Index (TDI)
Maintenance planning tool - trackbed condition score (TCS)

- Objective assessment of the overall quality of the trackbed, similar to a TQI commonly used in the assessment of track geometry.
Work order recommendations

- Rules-based system used to help determine most appropriate maintenance method and help define limits of work sites
WOR clustering

- Clustering algorithm identifies minimum length areas that meet WOR criteria, taking account of fixed assets:

 Clusters terminated at fixed assets that can’t be cut, such as road crossings and interlockings.
Undercutting recommendations

- The ballast fouling results were utilized individually and in conjunction with the most recently available track geometry data to identify locations for undercutting.
- Three sets of undercutting work order recommendation (WOR) results were generated based on the following sets of rules:
 - **WOR 1:** Left Shoulder OR Center OR Right Shoulder BFI > 25 (CAT 1 - 2)
 - **WOR 2:** Left Shoulder OR Center OR Right Shoulder BFI >10 (CAT 1 – 3) **AND**
 Track Geometry TGI* >= CAT 2
 - The track geometry (quality) index (TGI) was calculated based on a summation of the standard deviation of Gage, Alignment, Warp and Profile:
 \[
 TGI = 1\sigma \text{ GAGE} + 1\sigma ((\text{LPROF62+RPROF62})/2) + 1\sigma \text{ WARP62} + 1\sigma ((\text{LALIGN62+RALIGN62})/2)
 \]
 1\sigma values were determined over a 100-ft rolling window.
 TGI categorized as Good, Moderate or Poor based on thresholds of 0.25 and 0.4.
High risk shallow bedrock locations

Example BTI exception track chart from Main 1 between MP80.0 and MP150.0 illustrating locations where the interpreted depth to the base of the ballast is less than 10 inches.
RM80 structure clearance analysis

- Lidar point cloud data collected during the RASC survey.
- Clearance analysis of structures within the proposed limits of undercutting identified by the WOR.
- Used to determine whether RM80 could clear the structure with or without track slew.
Work order recommendation (WOR)

Location of proposed undercutting sites on Main 1 based on clustered WOR1 results:

Location of proposed undercutting sites on Main 1 based on clustered WOR2
Workflow

1. Acquire integrated RASC datasets
2. Calculate layer & fouling metrics
3. Calculate trackbed surface profile metrics
4. Lidar point cloud clearance analysis
5. Shallow bedrock identified from BTI
6. Run Work Order Recommendations & calculate Trackbed Condition Score
7. Identify required track slew locations
8. Filter U/C WOR locations
9. List of recommended U/C locations
Amtrak undercutting

- **Block Undercutting**
 - Entire length of track between two interlockings
 - Track out of service for a range of a few weeks to a few months
 - Targets larger drainage issues

- **Spot Undercutting**
 - Smaller locations that can be completed within a Friday-Monday 55-hour track outage
 - Targets mud spots
Recommendations for spot undercutting

• **Method #1**

 1. Pick 5-mile track sections from Trackbed Condition Summary

 • TCS is an analysis of 5 GPR-based metrics: layer roughness, ballast fouling, fouling depth, moisture likelihood, ballast thickness

 2. Reference the BB/Zetica Work Order Recommendations to pick specific locations

 • Based on Ballast Fouling Index and Track Geometry Index (warp, gage, profile, alignment)
Method #1 – trackbed condition summary

Track 1

Track 2
Method #1 – trackbed condition summary
Method #1 – work order recommendation
Method #1 – TCS Plus BFI, FDL, & geometry

1-Mile Report
Track 1
MP 111
Recommendations for spot undercutting

• **Method #2**

 • Pick blocks based on Amtrak geometry exception data

 • Look at the BB 1-mile Type 1 report
 • Narrowed down locations within the block by looking for locations where exceptions occurred and Ballast Fouling Index is high
Method #2 – Amtrak geometry exceptions

<table>
<thead>
<tr>
<th>Sub Division</th>
<th>Block</th>
<th>Track 1 Start</th>
<th>Track 1 End</th>
<th>Level 1’s</th>
<th>Level 3’s</th>
<th>Level 2’s</th>
<th>Track 1 Overall</th>
<th>Level 1’s</th>
<th>Level 3’s</th>
<th>Level 2’s</th>
<th>Track 2 Overall</th>
<th>Block Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Haven</td>
<td>Mill River to Shore Line Junction</td>
<td>73.00</td>
<td>74.54</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>0.24</td>
<td>0.13</td>
</tr>
<tr>
<td>New Haven</td>
<td>Shore Line Junction</td>
<td>74.55</td>
<td>75.14</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>New Haven</td>
<td>Shore Line Junction to Branford</td>
<td>75.15</td>
<td>81.26</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>New Haven</td>
<td>Branford</td>
<td>81.27</td>
<td>81.42</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>New Haven</td>
<td>Branford to Pine</td>
<td>81.43</td>
<td>82.78</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>New Haven</td>
<td>Pine</td>
<td>82.79</td>
<td>82.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>New Haven</td>
<td>Pine to Orchard</td>
<td>82.83</td>
<td>83.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Haven</td>
<td>Orchard</td>
<td>83.09</td>
<td>83.13</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Haven</td>
<td>Orchard to Meadow</td>
<td>83.19</td>
<td>88.34</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>0.66</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>0.38</td>
<td>0.52</td>
</tr>
<tr>
<td>New Haven</td>
<td>Meadow</td>
<td>88.35</td>
<td>88.64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>New Haven</td>
<td>Non</td>
<td>116.60</td>
<td>116.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Haven</td>
<td>Non to Shaws Cove</td>
<td>116.84</td>
<td>122.09</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Haven</td>
<td>Shaws Cove</td>
<td>122.10</td>
<td>122.66</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>New Haven</td>
<td>Shaws Cove to Groton</td>
<td>122.67</td>
<td>122.63</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>New Haven</td>
<td>Groton</td>
<td>123.64</td>
<td>124.57</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>New Haven</td>
<td>Groton to Palermers Cove</td>
<td>124.58</td>
<td>128.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Haven</td>
<td>Palermers Cove</td>
<td>128.06</td>
<td>128.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>New Haven</td>
<td>Palermers Cove to High Street</td>
<td>128.15</td>
<td>142.70</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.13</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0.20</td>
<td>0.13</td>
</tr>
<tr>
<td>New Haven</td>
<td>High Street to Kingston</td>
<td>142.71</td>
<td>158.53</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Providence</td>
<td>Kingston</td>
<td>156.54</td>
<td>159.00</td>
<td>0</td>
<td>5</td>
<td>12</td>
<td>0.64</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>0.82</td>
<td>0.73</td>
</tr>
<tr>
<td>Providence</td>
<td>Kingston to Stopy</td>
<td>159.01</td>
<td>166.37</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.11</td>
</tr>
<tr>
<td>Providence</td>
<td>Stopy</td>
<td>166.38</td>
<td>166.49</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Providence</td>
<td>Stopy to Davidson</td>
<td>166.50</td>
<td>167.79</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Providence</td>
<td>Davidson</td>
<td>167.86</td>
<td>168.33</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>Providence</td>
<td>Davidson to Malcomon</td>
<td>168.24</td>
<td>169.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Providence</td>
<td>Malcomon</td>
<td>169.84</td>
<td>169.96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.30</td>
<td>0.15</td>
</tr>
<tr>
<td>Providence</td>
<td>Malcomon to Packard</td>
<td>169.97</td>
<td>174.90</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0.16</td>
</tr>
<tr>
<td>Providence</td>
<td>Packard</td>
<td>174.91</td>
<td>175.12</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>Providence</td>
<td>Packard to Post</td>
<td>175.13</td>
<td>178.23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>Providence</td>
<td>Post</td>
<td>178.24</td>
<td>178.80</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td>Providence</td>
<td>Post to Cranston</td>
<td>178.81</td>
<td>180.69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Providence</td>
<td>Cranston</td>
<td>180.69</td>
<td>181.36</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>0.18</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0.16</td>
<td>0.05</td>
</tr>
<tr>
<td>Providence</td>
<td>Cranston to Atwellers</td>
<td>181.37</td>
<td>184.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Providence</td>
<td>Atwellers</td>
<td>184.13</td>
<td>184.87</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.08</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Method #2 – BB/Zetica 1-mile report
Targeting spot undercutting – interlocking construction

• New interlocking planned
• Recurrent mud spot just west of planned interlocking location
• Knowing that track will be out of service, we want to address drainage issue during construction
Targeting spot undercutting – interlocking construction

1-Mile Report
Type II
Track 2, MP 133
Amtrak drainage planning

- Current methods are not based on data
 - Reactionary based on track inspection observations
 - Ad-hoc spot improvements to known problem areas
 - Supplementary to large construction projects (i.e. tie/rail replacement, undercutting)
- Want to use BB/Zetica data and reports to improve drainage planning
Amtrak drainage planning

- Areas identified as having potentially elevated trackbed moisture levels are commonly observed to occur on both Main 1 and Main 2.

Extracts from MLI track charts for Main 1 & Main 2 between MP80.0 and MP90.0 and MP110.0 to MP120.0
Amtrak drainage planning

- Trackbed drainage was also assessed by comparing the surface profile data obtained from the 2d laser scanner with the Amtrak standard roadbed design profile detailed below.

- The design profile was modified in curves to account for track superelevation (SE) using superelevation data derived from the MTLS’s built in inertial measurement unit (IMU).
Amtrak drainage planning

• Ground contour plots provided on the Type II trackbed condition reports provide a top down view of the trackbed profile out to 32-ft from the track centerline.

• The plots are color-coded such that the design level of the formation is colored green. Areas of track above formation level appear as shades of green / brown enabling locations where off-track drainage is sub-optimal to be quickly identified.
Conclusions and benefits

• Optimize schedule and planning of undercutting, shoulder cleaning, surfacing, drainage work.

• Change from reactive / production based method of maintenance to condition based maintenance.

• Amtrak’s field engineers and Project Manager have started to request trackbed condition data.

• Optimize performance and extend the life of the asset.

• Cost savings / reduce impact on operations
 • Prioritizing work locations.
 • Derisking maintenance operations
 • Repeat visits to locations.
 • Track geometry exceptions
 • Train delays due to slow orders

• Improving passenger experience (ride / comfort).
Recommendations

• Next steps
 • Implement a more regular trackbed inspection program.
 • Monitor change over time “Run on Run” to work towards establishing a predictive time based model of maintenance.
 • QC maintenance work.
 • Implementation of drainage data for planning purposes.