INTRODUCTION

• Fatigue is reported by 75-95% of patients with MS, but the pathogenesis of MS fatigue is poorly understood.1,2
• There are no medications approved for MS fatigue.3
• Oxidative stress may play a role in MS fatigue.
• N-acetyl cysteine (NAC) is an anti-oxidant and is an oral precursor of cysteine approved for the treatment of acetaminophen-induced hepatotoxicity.4
• NAC restores hepatic cysteine which is a precursor to glutathione (GSH), a major intracellular antioxidant.4
• NAC decreases glumatamergic transmission, potentially decreasing excitotoxicity, which may protect from neurodegeneration.

OBJECTIVES

• To test the feasibility, tolerability and safety of NAC for fatigue in progressive MS.
• To evaluate changes in fatigue and oxidative pathway biomarkers on NAC versus placebo.

METHODS

• Randomized double-blind single center trial of individuals 18-75 years with progressive MS and fatigue (Modified Fatigue Impact Scale (MFIS) >38).
• 2:1 NAC 1250 mg TID or placebo for 4 weeks.
• Primary endpoint: Adverse events (AE).
• Primary efficacy endpoint: Change in MFIS from baseline to week 4.
• Secondary endpoints:
 • Change in MFIS from week 4 to 6 (2 weeks off treatment).
 • Change in blood GSH:GSSG ratio (reduced to oxidized glutathione).
 • Change in GSH concentration in grey matter on 7T MR spectroscopy (MRS).

Analyses

• Fisher exact test for categorical outcomes.
• Wilcoxon rank sum for continuous outcomes including change scores between groups.

RESULTS

Figure 1. CONSORT flow diagram.

Table 1. Characteristics of patients.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NAC (n=10)</th>
<th>Placebo (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years (SD)</td>
<td>51.3 (9.2)</td>
<td>65.7 (6.8)</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>8 (80%)</td>
<td>4 (80%)</td>
</tr>
<tr>
<td>Disease duration, median years (IQR)</td>
<td>14.9 (8.0-20.8)</td>
<td>22.7 (8.3-29.9)</td>
</tr>
<tr>
<td>MS subtype, n (%)</td>
<td>6 (60%)</td>
<td>4 (80%)</td>
</tr>
<tr>
<td>EDSS, median (IQR)</td>
<td>6.0 (4.0-6.0)</td>
<td>6.0 (3.5-6.0)</td>
</tr>
</tbody>
</table>

Table 2. Adverse events.

<table>
<thead>
<tr>
<th>Placebo (n=5), (i)</th>
<th>NAC (n=10), (ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary tract infection (1)</td>
<td>Increased fatigue (1)</td>
</tr>
<tr>
<td>Gait disturbance (1)</td>
<td>Abdominal pain (1)</td>
</tr>
<tr>
<td>Arthralgia (1)</td>
<td>Constipation (1)</td>
</tr>
<tr>
<td>Depression (1)</td>
<td>Common cold (1)</td>
</tr>
<tr>
<td>Back pain (1)</td>
<td>Sialadenitis (1)</td>
</tr>
<tr>
<td></td>
<td>Muscle weakness (1)</td>
</tr>
<tr>
<td></td>
<td>Gait disturbance (1)</td>
</tr>
<tr>
<td></td>
<td>Headache (1)</td>
</tr>
<tr>
<td></td>
<td>Anxiety (1)</td>
</tr>
<tr>
<td></td>
<td>Agitation (1)</td>
</tr>
<tr>
<td></td>
<td>Insomnia (1)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

• NAC was well tolerated in patients with progressive MS who had fatigue.
• Fatigue improved during the study period on both NAC and placebo, with a strong placebo effect.
• Fatigue improvement may be more sustained after discontinuing NAC than placebo.
• Effects of NAC compared to placebo on antioxidant biomarkers suggested an antioxidant effect of NAC.

Limitations

• Small sample size
• Short duration of treatment

Strengths

• Pilot study of a novel agent for patients with progressive MS and fatigue
• Randomized, blinded trial
• Use of 7T MR spectroscopy and serum biomarkers to evaluate anti-oxidant effect

Future directions

• Ongoing analysis of MRS data.
• Larger trial with longer term treatment is warranted to evaluate the efficacy and safety of NAC for fatigue in MS.

References

Disclosures: The authors have no conflicts of interest with respect to this study. Dr. Krysko’s fellowship is funded by the National Multiple Sclerosis Society. This study was funded by Race to Erase MS (A127771).