Association of Phosphorylated Neurofilament Heavy Chain (pNF-H) Levels With Motor Function Achievement in Individuals With Spinal Muscular Atrophy (SMA) Treated With Nusinersen

Charlotte J. Sumner, Basil T. Darras, Francesco Muntoni, Thomas O. Crawford, Richard S. Finkel, Eugenio Mercuri, Darryl C. De Vivo, Maryam Oskoui, Eduardo Tizzano, Monique M. Ryan, Guolin Zhao, Marco Petrillo, Christopher Stebbins, Stephanie Fradette, Wildon Farwell

Departments of Neurology and Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Department of Neurology, Boston Children's Hospital, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital Foundation Trust, Division of Neurology, Department of Pediatrics, Nemours Children's Hospital, Università Cattolica del Sacro Cuore, Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, Departments of Pediatrics and Neurology Neurosurgery, McGill University, Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron and CIBERER, Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute, University of Melbourne, Biogen

Objective: To assess phosphorylated neurofilament heavy chain (pNF-H) levels in individuals from nusinersen clinical trials with presymptomatic (most likely to develop Type I/II), infantile-onset (has or most likely to develop Type I/II) or later-onset SMA (has or most likely to develop Type II/III) and volunteers without SMA and investigate the association with motor function (MF) achievement in nusinersen-treated individuals with SMA.

Background: Neurofilaments (NF) are neuronal cytoskeleton components released into interstitial fluid following axonal damage/neuronal degeneration. Elevated NF levels have been detected in neurodegenerative disorders.

Design/Methods: pNF-H plasma levels were evaluated using the ProteinSimple™ SimplePlex ELLA immunoassay. MF responses in infantile-onset SMA included 1) improvement in ≥1 HINE-2 category and more categories improving than worsening or 2) ≥4-point CHOP INTEND improvement. MF responses in later-onset SMA included 1) ≥3-point HFMSE improvement, 2) ≥2-point RULM improvement, or 3) attainment of ≥1 WHO motor milestone. Receiver Operating Characteristic (ROC) curves and logistic regression analyses assessed pNF-H levels and MF achievement associations.

Results: Baseline pNF-H levels were higher in individuals with SMA (n=302) than age-matched individuals without SMA (n=34). In nusinersen-treated individuals with SMA, plasma pNF-H levels declined during the nusinersen loading period and then stabilized at lower levels through latest observed visits (infantile-onset SMA: Day 302; later-onset SMA: Day 456). The percentage change from baseline in pNF-H levels at nusinersen loading end (Day 64 or 85) predicted MF response at Day 302 (infantile-onset SMA; HINE-2: AUC=74%, CHOP INTEND: AUC=92%) and at Day 456 (later-onset SMA; HFMSE: AUC=73%, RULM: AUC=76%, WHO: AUC=86%) after controlling for age of first dose and disease duration, respectively.

Conclusions: pNF-H levels were elevated at baseline in individuals with SMA; however, nusinersen treatment reduced pNF-H levels to lower levels. The percentage change in pNF-H levels at the completion of nusinersen loading appears to predict subsequent MF response. Further evaluation is warranted.